+1 617 696-7335US+0016176967335US+353 1 685 4800EU+0035316854800EU

Amitriptyline Activates Cardiac Ryanodine Channels And Causes Spontaneous Sarcoplasmic Reticulum Calcium Release

Patients taking amitriptyline (AMT) have an increased risk of sudden cardiac death, yet the mechanism for AMT’s pro-arrhythmic effects remains incompletely understood. Here, we hypothesize that AMT activates cardiac ryanodine channels (RyR2) causing premature Ca2+ release from the sarcoplasmic reticulum (SR), a mechanism identified by genetic studies as a cause of ventricular arrhythmias and sudden cardiac death. To test this hypothesis, we measured AMT’s effects on RyR2 channels from mice and sheep and on intact mouse cardiomyocytes loaded with the Ca2+ fluorescent indicator Fura-2AM. AMT induced trains of long channel openings (bursts) with 60-90% of normal conductance in RyR2 channels incorporated in lipid bilayers. The [AMT]-, voltage- and Po-dependencies of burst frequency and duration indicated that AMT binds primarily to open RyR2 channels. AMT activated also RyR2 channels isolated from transgenic mice lacking cardiac calsequestrin. Reducing RyR2 Po by increasing cytoplasmic [Mg2+] significantly inhibited the AMT effect on RyR2 channels. Consistent with the single RyR2 channel data, AMT increased the rate of spontaneous Ca2+ releases and decreased the SR Ca2+ content in intact cardiomyocytes. Intracellular [AMT] were approximately 5-fold higher than extracellular [AMT], explaining AMT’s higher potency in cardiomyocytes at clinically relevant concentrations (0.5-3 µmol/l) compared to its effect in lipid bilayers (5-10 µmol/l). Increasing extracellular [Mg2+] attenuated the effect of AMT in intact myocytes. We conclude that the heretofore unrecognized activation of RyR2 channels and increased SR Ca2+ leak may contribute to AMT’s pro-arrhythmic and cardiotoxic effects, which may be counteracted by interventions that reduce RyR2 channel open probability.

Key words: Ion channel regulation, Fluorescence techniques, Anti-depressants

Login

Lost your password?