MURINE VENTRICULAR CARDIOMYOCYTE ISOLATION SOLUTIONS COMPOSITION

Adam B. Veteto

IonOptix Protocols
10/21/2019

LIST OF CHEMICALS AND REAGENTS

Chemical	Company	Catalog #
Minimum Essential Medium Eagle (MEM)	Sigma	M0518-10X1L
NaHCO3	Sigma	S8875-500G
Pyruvic Acid	Sigma	P-2256
Na-HEPES	Sigma	H7006-500G
HEPES	Sigma	H3375-1KG
Heparin		
Penicillin-Streptomycin (10,000U pen + 10,000mg strep per mL)	Gibco/Invitrogen	15140-122
Albumin from bovine serum (BSA)	Sigma	A6003-100G
Taurine	Sigma	T0625-100G
Liberase TH Research Grade	Roche	54 011 510 001
2,3-Butanedione monoxime	Sigma	
Creatine	Sigma	
Human Insulin	Internal Hospital Pharmacy	

SOLUTIONS TO PREPARE PRIOR TO DAY OF EXPERIMENTS

Liberase TH Research Grade aliquots

- -Dissolve 50 mg of Liberase TH in 10 mL dH₂O
- -Sit on ice to dissolve for 30 minutes
- -Separate into 1.125 mL aliquots (2.25 mL of 5 mg/mL = 11.25 mg) 2.25 mL will be added to 500 mL enzyme perfusion solution
- -Freeze at -80 until day of experiment

Zero Ca²⁺ PSS Base Solution

Chemical	FW or fluid conc	Amount /2L	final [mM]
NaCl	58.44	16.71 g	143
KCl	74.55	0.7455 g	5
d-Glucose	180	3.6 g	10
HEPES	238.3	4.766 g	10
MgCl_2	1 M sln	2 mL	1

fill to ~2L

stir, pH with NaOH to 7.35, fill to 2L Store at 4 degrees, make fresh weekly

MEM Base Solutions

Chemical	FW or fluid conc	Amount/L	final [mM]		
MEM	-	11.19 g	1X		
PenStrep sln	10,000 U/mL	5 mL	50,000 U/L		
NaHCO ₃	84.01	0.84 g	10		
Na-Pyruvate	110.04	0.22 g	2		
Na-HEPES	260.29	2.6 g	10		
HEPES	238.3	2.38 g	10		
fill to ~1L stir, pH to 7.35, fill to 1L Filter sterilize with 0.22 μm SteriCups Store at 4 degrees, keep sterile, make fresh weekly					

DAY-OF SOLUTIONS

MOUSE VENTRICULAR CARDIOMYOCYTE ISOLATION: LANGENDORFF PROTOCOL

1

Solution 1: Initial Wash

To 100 mL of **0 Ca²⁺ Base** solution add:

200 μl of heparin (1000 U/ml).

Final concentration of solution:

 $\begin{array}{ccc} NaCl & 143 \text{ mM} \\ KCl & 5 \text{ mM} \\ d\text{-Glucose} & 5 \text{ mM} \\ Hepes & 5 \text{ mM} \\ MgCl_2 & 1 \text{ mM} \\ Heparin & 2 \text{ U/mL} \end{array}$

<u>3</u>

Solution 3: BSA Solution

To **30 mL MEM Base solution** add:

300 mg BSA – allow to dissolve 12 µl of Human Insulin

18.7mg of Taurine

Final concentration of solution:

 $\begin{array}{ccc} \text{MEM} & 1X \\ \text{NaHCO}_3 & 7 \text{ mM} \\ \text{Na-Pyruvate} & 2 \text{ mM} \\ \text{Na-HEPES} & 7 \text{ mM} \\ \text{HEPES} & 7 \text{ mM} \\ \text{Taurine} & 10 \text{ mM} \end{array}$

Taurine 10 mM PenStrep 50,000 U/L

2

Solution 2: Enzyme Perfusion Solution

To 40 mL MEM Base solution add:

20 mg of BDM (2,3-Butanedione monoxime)

7 μl of 0.1 M CaCl₂ solution

Heat to 37 degrees C

Just prior to use add 350 µL of Blendzyme TH solution.

Final concentration of solution:

MEM 1X 7 mMNaHCO₂ Na-Pyruvate 2 mMNa-HEPES $7 \, \text{mM}$ **HEPES** 7 mM CaCl₂ 20 µM 5 mM Taurine BDM 5 mM 50,000 U/L PenStrep Blendzyme TH 0.045 mg/mL <u>--</u> 5а

50/50 Adaptor/BSA

To a 15mL falcon tube, mix 2 mL of Solution 4 and 2 mL of Solution 3.

Then add:

3.2 µl of 1M CaCl₂

Final solution concentration should be $800 \mu M$.

5b

Room Temp 0-Ca2+

PSS Base

Adaptor with CaCl,

To a 15mL falcon tube, add 10mL of Solution 4.

Then add:

4.5 µl of 1M CaCl₂

Final solution concentration should be 450 µM.

DAY-OF SOLUTIONS

RAT VENTRICULAR CARDIOMYOCYTE ISOLATION: LANGENDORFF PROTOCOL

1

Solution 1: Initial Wash

Add 600 µl of heparin (10,000 U/10ml) to 300 mL 0 Ca2+ Base

Final concentration of solution:

 $\begin{array}{lll} \text{NaCl} & 143 \text{ mM} \\ \text{KCl} & 5 \text{ mM} \\ \text{d-Glucose} & 10 \text{ mM} \\ \text{Hepes} & 10 \text{ mM} \\ \text{MgCl}_2 & 1 \text{ mM} \\ \text{Heparin} & 2 \text{ U/mL} \end{array}$

2

Solution 2: Enzyme Perfusion Solution (MEM #1 with Blendzyme and Taurine)

To 100 mL MEM Base solution add:

100 mg Taurine (MW 125.1)

 $10 \mu l$ of 0.1 M CaCl_2 solution $200 \mu l$ of heparin (10,000 U/10 ml)

Heat to 37 degrees, just prior to use add 875 µL of Blendzyme TH solution.

Final concentration of solution:

MEM 1X NaHCO₃ $10 \, \mathrm{mM}$ Na-Pyruvate $2 \, \text{mM}$ Na-HEPES 10 mM HEPES 10 mM CaCl₂ 10 μM Taurine 8 mM PenStrep 50,000 U/L Blendzyme TH 0.045 mg/mL 3

Solution 3: BSA Solution (MEM #2 with BSA)

To **50 mL MEM Base** solution add:

0.500 g BSA

Final concentration of solution:

MEM 1X NaHCO₂ 10 mM Na-Pyruvate 2 mMNa-HEPES $10 \, \mathrm{mM}$ HEPES 10 mM CaCl₂ 50 μΜ 50,000 U/L PenStrep BSA 10 mg/mL

4

Solution 4: Final Wash Solution (MEM #2 with Taurine)

To **50 mL MEM Base solution** add:

62.5 mg Taurine (MW 125.1) 25 μl of 0.1 M CaCl₂ solution.

Final concentration of solution:

MEM 1X

 $\begin{array}{ccc} \text{NaHCO}_3 & 10 \text{ mM} \\ \text{Na-Pyruvate} & 2 \text{ mM} \\ \text{Na-HEPES} & 10 \text{ mM} \\ \text{HEPES} & 10 \text{ mM} \\ \text{CaCl}_2 & 50 \text{ <math>\mu\text{M}} \\ \text{Taurine} & 10 \text{ mM} \\ \text{PenStrep} & 50,000 \text{ U/L} \end{array}$

5a

50/50 Adaptor/BSA

To a 50mL falcon tube, mix 25mL of Solution 4 and 25mL of Solution 3.

Then add: 40 μl of 1M CaCl $_2$

Final solution concentration should be 800 mM of 1M CaCl₂.

5b

Adaptor with CaCl₂

To a 50mL falcon tube, add 50mL of Solution 4.

Then add: 22.5 µl of 1M CaCl₂

Final solution concentration should be 450 mM of 1M CaCl₂